Middle Fork Project

Operational Interests Overview

February 2010

February 2010

Secure the benefits of the Middle Fork Project for the people of Placer County and the State of California

- Water Preserve and maintain a reliable water supply for the health, security and economic benefit of Placer County.
- Power Manage the power and energy benefits of this renewable resource in a reliable manner.
 - Maximize the value of the available hydroelectric power and energy output.
 - Contribute to statewide need for reliable, renewable energy sources.

- Environment Be a responsible long-term steward of the watershed resources in partnership with the resource agencies and stakeholders.
 - Balance the values of the community.
 - Protect and enhance the environment within the project watershed.

 Recreation – Respond to the diverse recreation needs of the public by utilizing the project's inherent capabilities and attributes, recognizing the need for public safety.

Key Operational ConsiderationsInflow Variability

- Meeting Consumptive Water Demands
- Seasonal Power Demand Variability
- Daily/Hourly Power Demand Variability
- Maintenance

Key Operational Considerations Inflow Variability

- Inflow is unpredictable
 - Variation year-to-year makes planning a challenge, plan for dry years until proven otherwise

MFP Inflow, 1967 - 2004

Key Operational Considerations

Consumptive Water Demands

MFP Consumptive Demand

Key Operational Considerations

Consumptive Water Demands

- Deliveries to retail customers at Auburn Pump Station
- Deliveries to wholesale customers at Folsom Lake
 - Roseville
 - San Juan
 - Sacramento Suburban
- Additional Dry Year Water Forum releases
- Total:
 - Current demand (2008): 64 TAF
 - Build out demand: 120 TAF + 47 TAF Water Forum

Key Operational Considerations Seasonal Power Value Variability

- Seasonality of the energy market is only semi-predictable
 - Peak seasons vary, peak days vary

Key Operational Considerations

Daily/Hourly Power Value Variability

Key Operational Considerations Daily/Hourly Power Value Variability

Target Peak Generation Hours

	Weekdays	Weekdavs	Weekdays	Weekends	Weekdays Mar - Mav	Weekends	
Hour of day	Jul - Aug	Jun, Sep	Nov - Feb	Jun - Sep	& Oct	Oct - May	
0	Off Peak	Off Peak	Off Peak	Off Peak	Off Peak	Off Peak	
1	Super Off Peak	Super Off Peak	Super Off Peak	Super Off Peak	Super Off Peak	Super Off Peak	
2							
3							
4							
5							
6	Off Peak	Off Peak	Off Peak	Off Peak	Off Peak		
7						Off Peak	
8	Low Partial Peak High Partial	Low Partial	l Low Partial Peak	Low Partial Peak	Low Partial Peak		
9		Peak					
10		High Partial					
11	Peak	Peak	1 Call				
12	Peak	Peak	High Partial Peak	High Partial Peak			
13							Critical
14	Crit Peak						Peak
15							High Pa
16							Low Par
17							Off Peal
18	Peak	High Partial					Super C
19		Peak					Total
20	High Partial	Low Partial		Low Partial			
21	Peak	Peak	Low Part Pk	Peak			
22	Off Peak	Off Peak	Off Peak	Off Peak	Off Peak		
23							

Hours in 2006	
Critical Peak	176
Peak	434
High Partial Peak	1393
Low Partial Peak	2127
Off Peak	3170
Super Off Peak	1460
Total	8760
Total	8760

Key Operational Considerations Maintenance

- Routine Maintenance Periods Mandatory
- Operation of Complex Machinery, Remote, Inaccessible & Occasionally Hazardous Locations

Interests Transition into Operations

• Operational Characteristics

- Characteristics of a day/week/season of operations
- Operating Constraints
 - Physical, Regulatory, and other operating constraints
- Model Presentation
- Operational Interests

- Reservoir Level Seasonal Variation
 - Fill Cycle (Dec June) driven primarily by inflow hydrology
 - Reservoirs generally fill in Above Normal and Wet years
 - Reservoir do not fill in Dry and Critically Dry years
 - Drawdown cycle:
 - Driven by consumptive demands in Dry & Critically dry years
 - Driven by seasonal power demands in Below Normal to Wet years

• Reservoir Levels Vary Year-to-Year and Seasonally

February 2010

- Reservoir Level Seasonal Variation (con't)
 - Low points (carryover storage) driven by water management considerations
 - Low enough to manage inflow
 - High enough to survive drought
 - Historic average (35 years) = 142 TAF combined
 - Historic variation 70 TAF to 165 + TAF

Operational Characteristics Combined Reservoir Elevation History, 33 years

Historical MFP Storage

February 2010

Reservoir Level Balancing – French Meadows & Hell Hole

- Flexibility to Undertake Peaking Operations with Large Generators
 - Operate MF & Ralston powerhouses together
 - Operate during valuable hours (peaking)
 - Weekly patterns:
 - Week days usually more valuable than weekends
 - Daily patterns:
 - Generate during hours with greater value

Operational Characteristics Key Elements for Peaking Operations

- Available water in Hell Hole reservoir
- Middle Fork and Ralston units operate "as one"
 - Long tunnels and small Interbay mandate closely coordinated operations
- Afterbay fluctuates for re-regulation
 - MF & Ralston generate only during peak hours
 - Downstream requirements and minimum flows are 24 hrs/day
 - Afterbay fills during peaking generation operations, empties when generation off-line

Operational Characteristics Peak Hours Generation Pattern

- Physical Capacities & Regulatory Requirements
- Total reservoir storage drawdown is limited to protect water supply reliability
- Middle Fork & Ralston Powerhouses must run in tandem due to very limited storage capacity at Interbay
- Afterbay Reservoir operations are constrained by Afterbay volume

- Ralston Afterbay is a valuable operational asset
 - Used for re-regulation, allowing peaking operations with MF & Ralston to be separated from downstream flow requirements
 - Allows continued minimum releases below Afterbay in event of an outage of MF and Ralston

Afterbay Inflow-Outflow-Elev Aug 25-31, 2008

Ralston Afterbay Operating Range

February 2010

Model Presentation

- Large Reservoir Storage Flexibility
 - To meet consumptive demands
 - To meet power requirements
- Middle Fork and Ralston Powerhouse Flexibility
 - Insulation from downstream minimum flow requirements

- Large Reservoir Storage Flexibility
 - Operate reservoirs to efficiently capture runoff
 - Releases seasonally variable to meet water supply and power demands
 - Plan dispatch operations to focus on Summer (Jul, Aug, Sept) and Fall (Nov, Dec) operations once runoff is certain
 - Retain some flexibility to accommodate hot weather periods, other unforeseen events

Middle Fork and Ralston Powerhouse Flexibility

- Operate MF & Ralston powerhouses together
- Operate during peak demand hours
- Weekly patterns:
 - Week days usually more valuable than weekends
- Daily patterns:
 - Generate during hours with greater value

• Middle Fork and Ralston Powerhouse Flexibility

- Afterbay fluctuates for re-regulation
 - MF & Ralston generate only during peak hours
 - Downstream requirements and minimum flows are 24 hrs/day
 - Afterbay fills during peaking generation operations, empties when generation off-line

Re-Regulation at Afterbay

- Flexibility to vary daily volume through MF & Ralston (into Afterbay)
 - Minimum instream flow requirements & consumptive demands set basic pattern
 - Current demands 280+ AF/day below Afterbay, Jun Sept
 - Buildout demand 575 AF/day below Afterbay, Jun Sept
 - Re-regulate through Afterbay to meet downstream requirements
 - Additional water at discretion of MFP operations

Secure the benefits of the project for the people of Placer County and the State of California

- Water Preserve and maintain a reliable water supply for the health, security and economic benefit of Placer County.
- Power Manage the power and energy benefits of this renewable resource in a reliable manner.
- Environment Be a responsible long-term steward of the watershed resources
- Recreation Respond to the diverse recreation needs of the public